Ícono del sitio La Neta Neta

‘Cirrus’, el nuevo supercomputador para predecir mejor las ‘filomenas’ y el tiempo en tu barrio

El meteorólogo británico Lewis Fry Richardson tardó seis semanas en hacer la primera predicción del tiempo con cálculos numéricos. No solo fue una eternidad, sino que además falló estrepitosamente en su vaticinio, pero en su defensa hay que alegar que hizo de cabeza el ingente número de operaciones necesarias, ya que faltaban 36 años para que se construyera el primer supercomputador. Sin máquinas, Richardson estimó que, para hacer un buen pronóstico, serían necesarias 64.000 personas, a las que llamó HPU (human processing units), calculando simultáneamente en una especie de fábrica de predicciones. El nuevo supercomputador que acaba de adquirir la Agencia Estatal de Meteorología (Aemet) es capaz de hacerlo él solito en apenas una hora.

Lo han bautizado Cirrus, la nube más alta del firmamento y que en latín significa mechón de pelo. “La idea era mantener un tipo de nube, ya que sustituye a Nimbus ―una nube gris oscura de altura media que produce precipitación―. Todos los nombres candidatos eran de nubes, pero desde el principio era el preferido”, explica Raúl Hilara, coordinador de Telemática de Aemet. La operación se ha hecho mediante un leasing a cinco años sin opción a compra por 8,62 millones de euros firmado con Caixabank Equipment Finance S.A.U., quien presentó a concurso una propuesta basada en la tecnología de Atos IT Solutions and Services. Hubo otras cinco propuestas.

¿Para qué va a servir? “Reforzará y ampliará las capacidades de Aemet en predicción, especialmente la de fenómenos meteorológicos adversos y el oleaje, permitirá hacer proyecciones climáticas de alta resolución para el estudio del cambio climático, aumentará la colaboración con organismos internacionales y optimizará los grandes volúmenes de información disponibles”, detalla el organismo. Para empezar, seguirá haciendo todo lo que hace el aparato actual, pero en menor tiempo: ejecutar el modelo determinista Harmonie, el de composición de la atmósfera Mocage y el de oleaje Wam. Y se irán “incorporando nuevos sistemas de predicción como el gSREPS para predecir fenómenos adversos y/o extremos como gotas frías en el Mediterráneo, cuya frecuencia e intensidad se ve incrementada a causa del cambio climático”, precisa su responsable.

Además, permitirá hacer “predicciones con mayor antelación, más precisas y detalladas en menos tiempo” y mejorar la resolución, es decir, las dimensiones en kilómetros de los fenómenos que es capaz de reproducir. Así, se logrará llegar a 2,5 kilómetros de resolución para la Península y Baleares y a 1,3 para Canarias. También se incorporará un sistema de nowcasting o predicción a muy corto plazo con partes a solo 12 horas vista y actualizaciones horarias, y se mejorará la escala para hacer los pronósticos más locales. “Ya no será el tiempo de Madrid, sino el de tu barrio de Madrid”, precisa Hilara.

Más precisión y detalle

Estos datos más precisos y con mayor resolución se traducirán en cambios en el sistema de avisos, que pueden hacerse a más largo plazo y pasar de tres a cinco días vista, y en nuevos formatos informativos. “En particular, se mejorarán las labores en la web para avanzar en la presentación georreferenciada de información meteorológica que ya se inició el año pasado”, indica Hilara, quien añade que se tratará de “integrar la observación y la predicción y nuevos canales de difusión de los avisos e información meteorológica basados en servicios de notificaciones”.

La costosa inversión, ¿saldrá rentable? “Aemet es un organismo de gasto, por lo que su rentabilidad no se puede expresar en términos económicos sino en sociales. Las mejoras ayudarán a sectores clave como la agricultura, la aeronáutica o el turismo; facilitarán las labores de otros organismos como Protección Civil; y permitirán la creación de oportunidades laborales”, asegura Hilara, a quien uno de los aspectos que más le ha sorprendido del nuevo aparato es el poco calor que genera gracias a las mejoras en acondicionamiento y refrigeración.

En el Top 500 mundial

Cirrus, que está en fase de montaje, ocupará nueve racks o estantes metálicos dentro de una habitación propia de 20,75 metros cuadrados en el Centro de Proceso de Datos de Aemet. Cuando esté operativo, a finales de mayo, se convertirá en el segundo megaordenador más potente de España tras el MareNostrum del Barcelona Supercomputing Center (BSC) y se stuará en el puesto 325 del Top 500 mundial, que lidera Japón. El Marenostrum está en el 42 del ranking. Respecto a los servicios meteorológicos europeos, colocará a España “tras Reino Unido, Alemania y Francia”.

La capacidad de estos gigantescos cerebros se mide con varios parámetros y en todos se logra “una mejora cuantitativa importante”. Uno de ellos es el almacenamiento, que será 16 veces mayor que el actual al pasar de 380 terabytes ―un tera equivale a ocho smartphones de 128 gigas― a 5,9 petabytes ―en un petabyte se pueden guardar 500.000 millones de páginas de un archivo de texto o 6,7 millones de discos de música en MP3―.

Actual superordenador de Aemet, llamado ‘Nimbus’ y que data de 2014.Aemet

Otro es la capacidad de cómputo, que se expresa en flops (operaciones de punto flotante por segundo, las más complejas). “Ahora mismo, en la primera fase, serán 1.350 teraflops, que se incrementarán a 1.680 en la segunda, en 2023, frente a los 168 actuales, lo que supone un incremento de ocho veces al principio y 10 veces después”, detalla Hilara. Un PC puede hacer 100 millones de operaciones por segundo (y muchas de ellas simples). Un solo teraflop tiene una capacidad 10 millones de veces mayor.

El nuevo superordenador se ha dividido en dos clústeres, u ordenadores gigantes gemelos, que pueden trabajar en conjunto o por separado. Estos estarán equipados con 35.840 núcleos en la primera fase y 48.128 en la segunda. Hoy por hoy, se dispone de 7.778 núcleos, por lo que el incremento es “brutal”. “Un PC de casa solo tiene uno o dos núcleos”, pone en contexto Hilara. “En uno de los clústeres vamos a tener la cadena operativa, de modo que si falla el primero se puede usar el segundo, que también se usa para pruebas de nuevos modelos y proyectos de investigación”, explica el ingeniero de Telecomunicaciones.

Y semejante bicho, ¿cuánto consume? “El consumo energético es información considerada confidencial por el adjudicatario, al indicar características claves respecto a la competencia con otros fabricantes”, responde Hilara que, eso sí, asegura que la “eficiencia energética ha mejorado una barbaridad”. Solo puede apuntar que cada clúster tiene un consumo inferior a 210 kW, mientras que el consumo del modelo actual, que tiene un único clúster, está un poco por encima dicha cota. No obstante, este no fue el criterio que más pesó a la hora de elegir aparato, sino su rendimiento y rapidez.

Cirrus contará con cinco cuidadores de la propia agencia, a los que se sumará el servicio de soporte externo de la adjudicataria, mientras que sus beneficiarios directos serán los grupos de telemática, modelización y predicción de Aemet, unos 50 usuarios. “Al ser un equipamiento destinado específicamente a la producción, no forma parte de la Red Española de Supercomputación, destinada principalmente a investigación”, aclara Hilara, que apunta, no obstante, que está abierta la posibilidad de firmar convenios para su uso académico.

Principales datos técnicos

Nimbus BULL DLC B700
(2014-2021)
Nuevo supercomputador
Cirrus (2021)
Nuevo supercomputador Cirrus (2023)
Número de nodos 324 802 376
Procesadores por nodo 2 2 2
Modelo de procesador Intel Xeon 2697 v2 (Ivy Bridge a 2,7 GHz) AMD EPYC Rome AMD EPYC Rome / Genoa
Procesadores totales 648 560 752
Núcleos por procesador 10 64 64 para EPYC Rome
Núcleos totales 7.776 35.840 48.128
Memoria RAM total 31,5 TB DDR3 70 TB DDR4 106 TB DDR4
Sistema operativo Red Hat Linux Red Hat Linux Red Hat Linux
Interconexión de nodos InfiniBand FDR a 56 Gbps Basada en Infiniband HDR Basada en Infiniband HDR
Sistema de ficheros
en paralelo
LUSTRE, 360 TB LUSTRE 5,9 PB LUSTRE 5,9 PB
Potencia estimada 168 TFLOPs Aprox. 1.350 TFLOPS Aprox. 1.680 TFLOPS

Source link
Salir de la versión móvil